– Solomon W. Golomb

Abstract

Binary sequences with two-level periodic correlation correspond directly to cyclic (v, k, λ) -designs. When v = 4t - 1, k = 2t - 1, and $\lambda = t - 1$, for some positive integer t, the sequence (or design) is called a *cyclic Hadamard sequence* (or *design*). For all known examples, v is either a prime number, a product of twin primes, or one less than a power of 2. Except when $v = 2^k - 1$, all known examples are based on quadratic residues (using the Legendre symbol when v is prime, and the Jacobi symbol when v = p(p+2) where both p and p+2 are prime); or sextic residues (when v is a prime of the form $4a^2+27$). However, when $v = 2^k - 1$, many constructions are now known, including *m*-sequences (corresponding to Singer difference sets), quadratic and sextic residue sequences (when $2^{k}-1$ is prime), GMW sequences and their generalizations (when k is composite), certain term-by-term sums of three and of five m-sequences, several constructions based on ovals and hyper-ovals in finite geometries, and the result of performing the Welch-Gong transformation on some of the foregoing. These constructions account for all known examples, which include all possible examples of cyclic Hadamard sequences with $v = 2^k - 1$ for k < 10 (for which exhaustive searches have been performed). It is thus plausible that all possible examples are now known, but this has not been proven.

The *m*-sequences also have the "span-*k*" property. They are a small subset (only $\phi(2^k - 1)/k$ such sequences of period $2^k - 1$) of the $2^{2^{k-1}-k}$ "modified de Bruijn sequences", sequences of period $2^k - 1$ obtainable from *k*-stage shift registers with (in general) nonlinear feedback in which every vector of length *k* except "all 0's" occurs once in each period. It is conjectured that a cyclic Hadamard sequence of period $2^k - 1$ which also has the span-*k* property must be an *m*-sequence, but to date neither a proof nor a counterexample has been found.