Crosscorrelation of m-Sequences, Exponential sums and Dickson polynomials

Tor Helleseth
University of Bergen NORWAY

(Joint work with Aina Johansen and Alexander Kholosha)

Outline

- Introduction
- m-sequences
- Correlation of sequences
- Properties of m-sequences
- Two-level ideal autocorrelation
- Survey
- Three-valued cross correlation
- Four-valued cross correlation
- New five-valued cross correlations
- Dickson polynomials
- Open problems

m-sequence (Example)

Linear recursion
$\mathrm{s}_{\mathrm{t}+4}=\mathrm{s}_{\mathrm{t}+1}+\mathrm{s}_{\mathrm{t}}$
Primitive polynomial
$f(x)=x^{4}+x+1$

Properties of m-sequences

- Period $\varepsilon=2^{\mathrm{n}}-1, \quad \mathrm{f}(\mathrm{x})$ primitive polynomial of degree n Good pseudorandom properties
- Balanced
- Run property
- Two-level autocorrelation
- $\mathrm{s}_{\mathrm{t}}-\mathrm{s}_{\mathrm{t}+\mathrm{t}}=\mathrm{s}_{\mathrm{t}+\gamma}$ and $\mathrm{s}_{2 \mathrm{t}}=\mathrm{s}_{\mathrm{t}+\delta}$
- Decimation by $\mathrm{d},\left(\mathrm{d}, 2^{\mathrm{n}}-1\right)=1$ gives an m -sequence
- Trace representation $\mathrm{s}_{\mathrm{t}}=\operatorname{Tr}_{\mathrm{n}}\left(\alpha^{\mathrm{t}}\right)$, where $\mathrm{f}(\alpha)=0$ and $\operatorname{Tr}: \operatorname{GF}\left(2^{\mathrm{n}}\right) \rightarrow \mathrm{GF}(2)$ is $\operatorname{Tr}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{x}^{2^{i}}$

Correlation of binary sequences

- Let $\left(a_{\mathrm{t}}\right)$ and $\left(\mathrm{b}_{\mathrm{t}}\right)$ be binary sequences of period ε
- The crosscorrelation between $\left(\mathrm{a}_{\mathrm{t}}\right)$ and $\left(\mathrm{b}_{\mathrm{t}}\right)$ at shift τ is

$$
\theta_{a, b}(\tau)=\sum_{t=0}^{\varepsilon-1}(-1)^{a_{t+\tau}-b_{t}}
$$

- The autocorrelation of $\left(a_{t}\right)$ at shift τ is

$$
\theta_{a, a}(\tau)=\sum_{t=0}^{\varepsilon-1}(-1)^{a_{t+\tau}-a_{t}}
$$

Two-level autocorrelation of m-sequences

- Let $\left(\mathrm{s}_{\mathrm{t}}\right)$ be an m-sequence of period $\varepsilon=2^{\mathrm{n}}-1$
- Then the autocorrelation of the m -sequence is

$$
\begin{aligned}
\theta_{\mathrm{s}, \mathrm{~s}}(\tau) & =2^{\mathrm{n}}-1 & & \text { if } \tau=0\left(\bmod 2^{\mathrm{n}}-1\right) \\
& =-1 & & \text { if } \tau \neq 0\left(\bmod 2^{\mathrm{n}}-1\right)
\end{aligned}
$$

Proof: Let $\tau \neq 0\left(\bmod 2^{n}-1\right)$. Then

$$
\begin{aligned}
\theta_{\mathrm{s}, \mathrm{~s}}(\tau) & =\Sigma_{\mathrm{t}}(-1)^{\mathrm{s}_{\mathrm{t}+\tau}-\mathrm{s}_{\mathrm{t}}} \\
& =\Sigma_{\mathrm{t}}(-1)^{\mathrm{s}_{\mathrm{t}+\gamma}} \\
& =-1 \quad \text { (since m-sequence is balanced) }
\end{aligned}
$$

Cross correlation of m-sequences

- Let $\left(\mathrm{s}_{\mathrm{t}}\right)$ be an m-sequence
- Let $\left(\mathrm{s}_{\mathrm{dt}}\right)$ be decimated m-sequence i.e., $\left(\mathrm{d}, 2^{\mathrm{n}}-1\right)=1$
- The cross correlation between the two m -sequences is defined by

$$
\mathrm{C}_{\mathrm{d}}(\tau)=\Sigma_{\mathrm{t}}(-1)^{\mathrm{s}_{\mathrm{t}+\tau}-\mathrm{s}_{\mathrm{dt}}}
$$

- In the case $\mathrm{d} \equiv 2^{\mathrm{i}}\left(\bmod 2^{\mathrm{n}}-1\right)$ then $\left(\mathrm{s}_{\mathrm{dt}}\right)=\left(\mathrm{s}_{\mathrm{t}+\gamma}\right)$ and $\mathrm{C}_{\mathrm{d}}(\tau)$ has only two-values (autocorrelation)
- In all other cases, at least three values occur

Some properties of $C_{d}(\tau)$

- $\mathrm{C}_{\mathrm{d}}(\tau)$ and $\mathrm{C}_{\mathrm{d}^{\prime}}(\tau)$ has the same distribution when $\mathrm{d}^{\prime} \cdot \mathrm{d}^{\prime} \equiv 1\left(\bmod 2^{\mathrm{n}}-1\right)$ or when $\mathrm{d}^{\prime} \equiv \mathrm{d} \cdot 2^{\mathrm{i}}\left(\bmod 2^{\mathrm{n}}-1\right)$
- $\Sigma_{\tau}\left(\mathrm{C}_{\mathrm{d}}(\tau)+1\right)=2^{\mathrm{n}}$
- $\Sigma_{\tau}\left(\mathrm{C}_{\mathrm{d}}(\tau)+1\right)^{2}=2^{2 \mathrm{n}}$
- $\Sigma_{\tau} \mathrm{C}_{\mathrm{d}}(\tau)^{\mathrm{k}}=-\left(2^{\mathrm{n}}-1\right)^{\mathrm{k}-1}+2(-1)^{\mathrm{k}-1}+\mathrm{a}_{\mathrm{k}} 2^{2 \mathrm{n}}$
where a_{k} is the number of solutions of

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{k-1}+1=0 \\
& x_{1}{ }^{d}+x_{2}^{d}+\ldots+x_{k-1}^{d}+1=0
\end{aligned}
$$

with $\mathrm{x}_{\mathrm{i}} \varepsilon \mathrm{GF}\left(2^{\mathrm{n}}\right)^{*}=\mathrm{GF}\left(2^{\mathrm{n}}\right) ¥\{0\}$

Binary 3-valued cross correlation

- $\mathrm{C}_{\mathrm{d}}(\tau)$ has exactly 3 different values in the cases:
- Gold : $\mathrm{d}=2^{\mathrm{k}}+1$
- Kasami : $d=2^{2 k}-2^{k}+1 \quad$ where $n /(n, k)$ is odd
- Welch's conjecture: (Canteau, Charpin, Dobbertin 2000)

$$
\mathrm{d}=2^{\mathrm{m}}+3 \quad \text { where } \mathrm{n}=2 \mathrm{~m}+1 \text { is odd }
$$

- Niho's conjecture: (Dobbertin \& Hollman, Xiang)

$$
\begin{aligned}
\mathrm{d} & =2^{(\mathrm{n}-1) / 2}+2^{(\mathrm{n}-1) / 4}-1 \quad \text { when } \mathrm{n} \equiv 1(\bmod 4) \\
& =2^{(\mathrm{n}-1) / 2}+2^{(3 n-1) / 4}-1
\end{aligned} \text { when } \mathrm{n} \equiv 3(\bmod 4)
$$

- Cusick and Dobbertin

$$
\begin{array}{ll}
\mathrm{d}=2^{\mathrm{n} / 2}+2^{(\mathrm{n}+2) / 2}+1 & \text { when } \mathrm{n} \equiv 2(\bmod 4) \\
\mathrm{d}=2^{(\mathrm{n}+2) / 2}+3 & \text { when } \mathrm{n} \equiv 2(\bmod 4)
\end{array}
$$

Binary 4-valued cross correlation

Theorem (Dobbertin, Felke, Helleseth, Rosendal (2006))
Let $\mathrm{r}<\mathrm{k}$ be given such that $\left(2^{\mathrm{r}}-1\right)^{-1}$ and $\left(2^{\mathrm{r}}+1\right)^{-1}$ exist $\bmod 2^{\mathrm{k}}+1$. Let $\mathrm{v}_{2}(\mathrm{r})<\mathrm{v}_{2}(\mathrm{k})$ and

$$
\begin{array}{ll}
d=\left(2^{\mathrm{k}}-1\right) \mathrm{s}^{+}+1 & \text { with } \mathrm{s}=2^{\mathrm{r}} \cdot\left(2^{\mathrm{r}}-1\right)^{-1} \\
\mathrm{~d}^{\prime}=\left(2^{\mathrm{k}}-1\right) \mathrm{s}^{\prime}+1 & \text { with } \mathrm{s}^{\prime}=2^{\mathrm{r}} \cdot\left(2^{\mathrm{r}}+1\right)^{-1}
\end{array}
$$

Then $\mathrm{C}_{\mathrm{d}}(\tau)$ takes on 4 values and distribution is known.

Conjecture:
All 4-valued decimations of the form $d=\left(2^{\mathrm{k}}-1\right) \mathrm{s}+1$
is covered by the Theorem

Two Conjectures

Conjecture 1 (Helleseth)

If the period is $2^{\mathrm{n}}-1$ and $\mathrm{n}=2^{\mathrm{i}}$ then $\mathrm{C}_{\mathrm{d}}(\tau)$ has at least 4 values

Conjecture 2 (Helleseth)

For any $\left(\mathrm{d}, 2^{\mathrm{n}}-1\right)=1$, then

$$
\mathrm{C}_{\mathrm{d}}(\tau)=-\mathbf{1} \text { for some } \tau
$$

Remark. The -1 conjecture is equivalent with

$$
\Pi_{\tau}\left(\mathrm{C}_{\mathrm{d}}(\tau)+1\right)=0
$$

Calculations show that the conjecture is equivalent to proving: The system of equations (α is a primitive element)

$$
\begin{aligned}
& \mathrm{x}_{0}+\alpha \mathrm{x}_{1}+\alpha^{2} \mathrm{x}_{2}+\ldots+\alpha^{\mathrm{q}-2} \mathrm{x}_{\mathrm{q}-2}=0 \\
& \mathrm{x}_{0}{ }^{\mathrm{d}}+\mathrm{x}_{1}{ }^{\mathrm{d}}+\quad \mathrm{x}_{2}{ }^{\mathrm{d}}+\ldots+\quad \mathrm{x}_{\mathrm{q}-2}{ }^{\mathrm{d}}=0
\end{aligned}
$$

has exactly $\mathrm{q}^{\mathrm{q}-3}$ solutions $\mathrm{x}_{\mathrm{i}} \in \mathrm{GF}\left(2^{\mathrm{n}}\right)$, where $\mathrm{q}=2^{\mathrm{n}}$

Decimations $d=\left(2^{l}+1\right) /\left(2^{k}+1\right)$

- $\mathrm{d}=\left(2^{3 \mathrm{k}}+1\right) /\left(2^{\mathrm{k}}+1\right)=2^{2 \mathrm{k}}-2^{\mathrm{k}}+1$ (Kasami-Welch) 3-Valued
- Conjecture (Niho 1972)
$\mathrm{d}=\left(2^{\mathrm{tk}}+1\right) /\left(2^{\mathrm{k}}+1\right), \mathrm{t}>3$ odd, gives at most 5 valued correlation
- Counterexample for $\mathrm{t}=7$ (Langevin, Leander, McGuire (2007))
- Some cases known with 5 -valued correlation
- Kasami $d=\left(2^{5 k}+1\right) /\left(2^{\mathrm{k}}+1\right) \quad(\mathrm{k}, \mathrm{n})=1, \mathrm{n}$ odd
- Bracken $\mathrm{d}=\left(2^{5 \mathrm{k}}+1\right) /\left(2^{3 \mathrm{k}}+1\right) \quad(\mathrm{k}, \mathrm{n})=1, \mathrm{n}$ odd

Correlation values $-1,-1 \pm 2^{(n+1) / 2},-1 \pm 2^{(n+3) / 2}$
Exact correlation distribution is unknown

- Theorem (Johansen, Helleseth 2008) $\mathrm{d}=\left(2^{2 \mathrm{k}}+1\right) /\left(2^{\mathrm{k}}+1\right) \quad \mathrm{k}=1$, n odd (i.e., $\left.\mathrm{d}=5 / 3\right)$ gives 5 -valued cross correlation and distribution is completely determined

Sketch of proof $d=\left(2^{2 k}+1\right) /\left(2^{k}+1\right),(k=1, n$ odd $)$

1. The cross correlation is 5 -valued with correlation values

$$
-1,-1 \pm 2^{(n+1) / 2},-1 \pm 2^{(n+3) / 2} \quad \text { (n odd) }
$$

2. The distribution depends on the number of solutions of

$$
\begin{aligned}
& x^{3}+y^{3}+1=0 \\
& x^{5}+y^{5}+1=0
\end{aligned}
$$

3. The distribution of the correlation values depends on the number of solutions $\mathbf{A}_{\mathbf{1}}=\mathbf{N}(\mathbf{1 , 0 , 0})$ of

$$
\begin{aligned}
& \mathrm{x}+\mathrm{y}+\mathrm{u}+\mathrm{z}=1=\mathrm{a} \\
& \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{u}^{3}+\mathrm{z}^{3}=0=\mathrm{b} \\
& \mathrm{x}^{5}+\mathrm{x}^{5}+\mathrm{u}^{5}+\mathrm{z}^{5}=0=\mathrm{c}
\end{aligned}
$$

4. Charpin, Helleseth, Zinoviev (2005) showed that $\mathbf{N}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ can be expressed as a function of three exponential sums
5. $\mathrm{N}(1,0,0)$ can be determined explicitly

1. The cross correlation is 5 -valued

The cross correlation when $\mathrm{d}=\left(2^{\mathrm{l}}+1\right) /\left(2^{\mathrm{k}}+1\right)$ can be expressed by

$$
\left.\mathrm{C}_{\mathrm{d}}(\tau)=\Sigma_{\mathrm{x} \neq 0}(-1)^{\operatorname{Tr}\left(a \mathrm{x}+\mathrm{x}^{\mathrm{d}}\right)}=\Sigma_{\mathrm{x} \neq 0}(-1)^{\mathrm{Tr}\left(a \mathrm{x}^{2^{k}+1}+\mathrm{x}^{2}+1\right.}\right)
$$

Squaring the correlation

$$
\left(\mathrm{C}_{\mathrm{d}}(\tau)+1\right)^{2}=2^{\mathrm{n}}\left|\mathrm{~K}_{\mathrm{a}}\right| \text { or } 0
$$

where K_{a} is the zeros in $\operatorname{GF}\left(2^{n}\right)$ of

$$
L_{a}(z)=z^{21}+a^{1} z^{2^{k+1}}+a^{2^{1-k}} z^{2 l-k}+z
$$

For $\mathbf{l}=2 \mathrm{k}$

$$
L_{a}(z)=z^{24 k}+a^{23 k} z^{2^{k}}+a^{2^{k}} z^{2^{k}}+z
$$

For n odd, the possible number of solutions is

$$
1,2^{\mathrm{e}}, 2^{2 \mathrm{e}}, 2^{3 \mathrm{e}}, 2^{4 \mathrm{e}} \text { for } \mathrm{e}=(\mathrm{k}, \mathrm{n})
$$

Hence, the cross correlation is 5 -valued with correlation values

$$
-1,-1 \pm 2^{(\mathrm{n}+\mathrm{e}) / 2},-1 \pm 2^{(\mathrm{n}+3 \mathrm{e}) / 2} \quad(\mathrm{n} \text { odd } \text { and } \mathrm{e}=(\mathrm{k}, \mathrm{n})=1)
$$

2. Determination of third powers

Theorem Let $\mathrm{d}=\left(2^{1}+1\right) /\left(2^{\mathrm{k}}+1\right)$ then $\Sigma_{\tau}\left(\mathrm{C}_{\mathrm{d}}(\tau)+1\right)^{3}=2^{2 \mathrm{n}} \mathrm{b}_{3}$ where $\mathrm{x}, \mathrm{y} \varepsilon \operatorname{GF}\left(2^{\mathrm{n}}\right)^{*}=\operatorname{GF}\left(2^{\mathrm{n}}\right) ¥\{0\}$

$$
\begin{aligned}
& \mathrm{x}^{2^{\mathrm{k}+1}}+\mathrm{y}^{2^{\mathrm{k}+1}}+1=0 \\
& \mathrm{x}^{2^{1+1}}+\mathrm{y}^{\mathrm{y}^{2}+1}+1=0
\end{aligned}
$$

Then $b_{3}=2^{(k+1, n)}+2^{(1-k, n)}-2^{(k+1, l-k, n)}-2$.
Proof
Eliminating y gives

$$
\left(x^{k+1}+x\right)\left(x^{1-k}+x\right)^{2^{k}}=0
$$

Corollary

For $l=2 k$ then $b_{3}=2^{(3 k, n)}-2$

3/4. Solutions of equation system

Theorem (Charpin, Helleseth, Zinovev (2005))
Let $\mathrm{N}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ be the number of solutions ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u})$ in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$ of

$$
\begin{aligned}
& \mathrm{x}+\mathrm{y}+\mathrm{u}+\mathrm{z}=1=\mathrm{a} \\
& \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{u}^{3}+\mathrm{z}^{3}=0=\mathrm{b} \\
& \mathrm{x}^{5}+\mathrm{x}^{5}+\mathrm{u}^{5}+\mathrm{z}^{5}=0=\mathrm{c}
\end{aligned}
$$

If n is odd then $\mathrm{N}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ can be expressed by three exponential sums, especially

$$
\mathrm{A}_{1}=\mathrm{N}(1,0,0)=2^{\mathrm{n}}+1+3 \mathrm{G}_{\mathrm{n}}-2 \mathrm{~K}_{\mathrm{n}}-2 \mathrm{C}_{\mathrm{n}}
$$

where

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}}=\Sigma_{\mathrm{x}}(-1)^{\operatorname{Tr}_{\mathrm{n}}\left(\mathrm{x}^{3}+\mathrm{x}\right)} \\
& \mathrm{K}_{\mathrm{n}}=\Sigma_{\mathrm{x}}(-1)^{\operatorname{Trn}_{\mathrm{n}}\left(\mathrm{x}+\mathrm{x}^{-1}\right)} \\
& \mathrm{G}_{\mathrm{n}}=\Sigma_{\mathrm{x}}(-1)^{\operatorname{Tr}_{\mathrm{n}}\left(\mathrm{x}^{3}+\mathrm{x}^{-1}\right)}
\end{aligned}
$$

(Gold sum)
(Kloosterman sum)
("Inverse" Gold sum)
and trace is from $\operatorname{GF}\left(2^{\mathrm{n}}\right)$ to $\mathrm{GF}(2)$

5. On the number of solutions $\mathrm{A}_{1}=\mathbf{N}(1,0,0)$

- $\mathrm{A}_{1}=\mathrm{N}(1,0,0)=2^{\mathrm{n}}+1+3 \mathrm{G}_{\mathrm{n}}-2 \mathrm{~K}_{\mathrm{n}}-2 \mathrm{C}_{\mathrm{n}}$

Finding C_{n}

- $\mathrm{C}_{\mathrm{n}}=\sum_{\mathrm{xEGF}\left(2^{\mathrm{n}}\right)}(-1)^{\mathrm{Tr}_{\mathrm{n}}\left(\mathrm{x}^{3}+\mathrm{x}\right)}=-\eta_{1}{ }^{\mathrm{n}}-\eta_{2}{ }^{\mathrm{n}}$
- $C_{1}=2, C_{2}=0$ and η_{1}, η_{2} are zeros of $x^{2}+2 x+2$ and
- $C_{n}=(2 / n) 2^{n+1}$ where $(2 / n)$ is the Jacobi symbol

Finding K_{n}

- $K_{n}=\Sigma_{x \neq 0}(-1)^{\operatorname{Tr}_{\mathrm{n}}\left(\mathrm{x}+\mathrm{x}^{-1}\right)}=-\eta_{1}{ }^{\mathrm{n}}-\eta_{2}{ }^{\mathrm{n}}$
- $K_{1}=1, K_{2}=2$ and η_{1}, η_{2} are zeros of $x^{2}+x+2$

Finding G_{n}

- $\mathrm{G}_{\mathrm{n}}=\sum_{\mathrm{x} \neq 0}(-1)^{\mathrm{Tr}_{\mathrm{n}}\left(\mathrm{x}^{3}+\mathrm{x}^{-1}\right)}=-\eta_{1}{ }^{\mathrm{n}}-\eta_{2}{ }^{\mathrm{n}}-\eta_{3}{ }^{\mathrm{n}}-\eta_{4}{ }^{\mathrm{n}}$
- $\mathrm{G}_{1}=1, \mathrm{G}_{2}=-1, \mathrm{G}_{3}=7$ and $\mathrm{G}_{4}=7$
- $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}$ are zeros of $x^{4}+x^{3}+2 x+1$

Correlation distribution for $\mathbf{d = 5 / 3}$

Let $\mathrm{A}_{1}=\mathrm{N}(1,0,0)=2^{\mathrm{n}}+1+3 \mathrm{G}_{\mathrm{n}}-2 \mathrm{~K}_{\mathrm{n}}-2 \mathrm{C}_{\mathrm{n}}$
Theorem (Distribution of $\mathrm{C}_{\mathrm{d}}(\tau)+1$)

- In the case $(3, n)=1$

$$
\begin{array}{cccc}
\pm 2^{(n+3) / 2} & \text { occurs } & \mathrm{A}_{1} / 96 & \text { times } \\
-2^{(\mathrm{n}+1) / 2} & \text { occurs } & \left(3 \cdot 2^{\mathrm{n}+1}-3 \cdot 2^{(\mathrm{n}+3) / 2}-\mathrm{A}_{1}\right) / 24 & \text { times } \\
+2^{(\mathrm{n}+1) / 2} & \text { occurs } & \left(3 \cdot 2^{\mathrm{n}+1}+3 \cdot 2^{(\mathrm{n}+3) / 2}-\mathrm{A}_{1}\right) / 24 & \text { times } \\
0 & \text { occurs } & 2^{\mathrm{m}-1}-1+\mathrm{A}_{1} / 16 & \text { times }
\end{array}
$$

- In the case $(3, n)=3$

$$
\begin{array}{cccc}
-2^{(n+3) / 2} & \text { occurs } & \left(-3 \cdot 2^{(n+5) / 2}+A_{1}\right) / 96 & \text { times } \\
+2^{(n+3) / 2} & \text { occurs } & \left(3 \cdot 2^{(n+5) / 2}+A_{1}\right) / 96 & \text { times } \\
\pm 2^{(n+1) / 2} & \text { occurs } & \left(3 \cdot 2^{n+1}-A_{1}\right) / 24 & \text { times } \\
0 & \text { occurs } & 2^{n-1}-1+A_{1} / 16 & \text { times }
\end{array}
$$

General case $\mathbf{d}=\left(2^{2 k}+1\right) /\left(2^{k}+1\right)$, n odd

- All previous steps work except we need to find A_{1}
- Consider the number of solutions A_{1} of

$$
\begin{aligned}
& \mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{u}=\mathrm{a}(=1) \\
& \mathrm{x}^{2^{k+1}}+\mathrm{y}^{2^{\mathrm{k}+1}}+\mathrm{z}^{\mathrm{z}^{\mathrm{k}+1}}+\mathrm{u}^{2^{\mathrm{k}+1}}=0 \\
& \mathrm{x}^{2 \mathrm{x}^{2}+1}+\mathrm{y}^{2 \mathrm{z}^{2 k+1}}+\mathrm{z}^{2 \mathrm{k}^{2}+1}+\mathrm{u}^{2 \mathrm{k}+1}=0
\end{aligned}
$$

- The complete 5 -valued correlation distribution can be determined from A_{1}
- How to find A_{1} for general k ??

$A_{1}=\mathbf{N}(1,0,0)$ and exponential sums

Kloosterman sum: $\mathrm{K}_{\mathrm{n}}=\Sigma_{\mathrm{x} \neq 0}(-1)^{\operatorname{Tr}_{\mathrm{n}}(\mathrm{x}+\mathrm{x}-1)}$
Gold sum:

$$
\mathrm{C}_{\mathrm{n}}=\Sigma_{\mathrm{x} \neq 0}(-1)^{\operatorname{Tr}_{\mathrm{n}}\left(\mathrm{x}^{2}+1+\mathrm{x}\right)}
$$

Inverse cubic: $\left.\quad \mathrm{G}_{\mathrm{n}}{ }^{(\mathrm{k})}=\sum_{\mathrm{x} \neq 0}(-1)^{\operatorname{Tr}_{\mathrm{n}}\left(\mathrm{x}^{2^{k}}+1+\mathrm{x}\right.} \mathrm{x}^{-1}\right)$
Gen. sum: $\mathrm{K}_{\mathrm{n}}{ }^{\prime}=\Sigma_{\mathrm{x} \neq 0}(-1)^{\operatorname{Tr}_{\mathrm{n}}(\mathrm{f}(\mathrm{x}))}$ where $f(x)=\frac{\left(x^{2}+x\right)^{2^{k}}}{\left(x^{x^{k}}+x\right)^{2^{k}+1}}$
Theorem Let n be odd and $\mathbf{(k , n})=\mathbf{1}$ then

$$
\mathrm{A}_{1}=2^{\mathrm{n}}+1+3 \mathrm{G}_{\mathrm{n}}^{(\mathrm{k})}-2 \mathrm{C}_{\mathrm{n}}-2 \mathrm{~K}_{\mathrm{n}}^{\prime}
$$

Conjecture

For any $(\mathrm{k}, \mathrm{n})=1$ then $\mathrm{K}_{\mathrm{n}}=\mathrm{K}_{\mathrm{n}}{ }^{\prime}$ and $\mathrm{G}_{\mathrm{n}}{ }^{(\mathrm{k})}=\mathrm{G}_{\mathrm{n}}{ }^{(1)}$

Introduction to Dickson polynomials

- Dickson polynomial $\quad D_{r}(x, u)=\sum_{i=0}^{\left[\frac{r}{2}\right]} \frac{r}{r-i}\left(\frac{r}{r-i}\right)(-u)^{i} x^{r-2 i}$
- Let $u=1$ and $D_{r}(x)=D_{r}(x, 1)$
- $\mathrm{D}_{\mathrm{r}}\left(\mathrm{x}+\mathrm{x}^{-1}\right)=\mathrm{x}^{\mathrm{r}}+\mathrm{x}^{-\mathrm{r}}$
- $\mathrm{D}_{2^{k+1}}(\mathrm{x})=\mathrm{x}^{2^{\mathrm{k}+1}}+\mathrm{x}^{2^{\mathrm{k}}-1}+\mathrm{x}^{2^{\mathrm{k}-3}}+\ldots+\mathrm{x}$

$$
\begin{array}{lll}
\mathrm{D}_{1}(\mathrm{x})=\mathrm{x} & \mathrm{D}_{2}(\mathrm{x})=\mathrm{x}^{2} & \mathrm{D}_{3}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x} \\
\mathrm{D}_{4}(\mathrm{x})=\mathrm{x}^{4} & \mathrm{D}_{5}(\mathrm{x})=\mathrm{x}^{5}+\mathrm{x}^{3}+\mathrm{x} & \mathrm{D}_{6}(\mathrm{x})=\mathrm{x}^{6}+\mathrm{x}^{2} \\
\mathrm{D}_{7}(\mathrm{x})=\mathrm{x}^{7}+\mathrm{x}^{3}+\mathrm{x} & \mathrm{D}_{8}(\mathrm{x})=\mathrm{x}^{8} & \mathrm{D}_{9}(\mathrm{x})=\mathrm{x}^{9}+\mathrm{x}^{7}+\mathrm{x}^{5}+\mathrm{x}
\end{array}
$$

- $\mathrm{D}_{\mathrm{r}}(\mathrm{x})$ is a permutation polynomial in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$ iff $\left(\mathrm{r}, 2^{2 \mathrm{n}}-1\right)=1$
- If $\left(r, 2^{n}-1\right)=1$ and $D_{r}(x) \neq 0$ then

$$
\operatorname{Tr}_{\mathrm{n}}(1 / \mathrm{x})=\operatorname{Tr}_{\mathrm{n}}\left(1 / \mathrm{D}_{\mathrm{r}}(\mathrm{x})\right)
$$

Dickson and Kloosterman

Let $\left(r, 2^{2 n}-1\right)=1$ then $D_{r}(x)$ is a permutation polynomial and $\operatorname{Tr}_{n}\left(D_{r}(x)^{-1}\right)=\operatorname{Tr}_{n}\left(x^{-1}\right)$.
LEMMA

$$
\mathrm{K}_{\mathrm{n}}=\sum_{x \neq 0}(-1)^{T_{n}\left(D_{r}(x)+x^{-1}\right)}
$$

PROOF :

$$
\begin{aligned}
K_{n} & =\sum_{x \neq 0}(-1)^{T r_{n}\left(x+x^{-1}\right)} \\
& =\sum_{x \neq 0}(-1)^{T r_{n}\left(D_{r}(x)+D_{r}(x)^{-1}\right)} \\
& =\sum_{x \neq 0}(-1)^{T r_{n}\left(D_{r}(x)+x^{-1}\right)}
\end{aligned}
$$

The case $\mathrm{l}=2 \mathrm{k}$ (I)

- Consider the number of solutions A_{1} of

$$
\begin{aligned}
& \mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{u}=\mathrm{a}(=1) \\
& \mathrm{x}^{2^{\mathrm{k}+1}}+\mathrm{y}^{2^{\mathrm{k}+1}}+\mathrm{z}^{2^{\mathrm{k}+1}}+\mathrm{u}^{2^{\mathrm{k}+1}}=0 \\
& \mathrm{x}^{2^{2 \mathrm{k}_{+1}}+\mathrm{y}^{2^{2 \mathrm{k}_{+1}}}+\mathrm{z}^{2 \mathrm{k}_{+1}}+\mathrm{u}^{2 \mathrm{k}_{+1}}=0}
\end{aligned}
$$

- Let

$$
\begin{array}{ll}
x+y=v \quad \text { and } x y=w\left(=v^{2} r\right) & \text { i.e., } \operatorname{Tr}_{n}(r)=0 \\
z+u=v+a \text { and } z u=(v+a)^{2} s & \text { i.e., } \operatorname{Tr}_{n}(s)=0
\end{array}
$$

- Then system becomes

$$
\begin{aligned}
& D_{2^{k+1}}\left(v, v^{2} r\right)+D_{2^{k}+1}\left(v+a,(v+a)^{2} s\right)=0 \\
& D_{2^{2 k+1}}\left(v, v^{2} r\right)+D_{2^{2 k+1}}\left(v+a,(v+a)^{2} s\right)=0
\end{aligned}
$$

or

$$
\begin{aligned}
& \mathrm{v}^{2^{\mathrm{k}+1}}\left(1+\mathrm{r}+\mathrm{r}^{2}+\ldots+\mathrm{r}^{2^{\mathrm{k}-1}}\right)=(\mathrm{v}+1)^{2^{\mathrm{k}+1}}\left(1+\mathrm{r}+\mathrm{r}^{2}+\ldots+\mathrm{r}^{2^{\mathrm{k}-1}}\right) \\
& \mathrm{v}^{2^{2 \mathrm{k}+1}}\left(1+\mathrm{r}+\mathrm{r}^{2}+\ldots+\mathrm{r}^{2^{\mathrm{k}-1}}\right)=(\mathrm{v}+1)^{2^{2 \mathrm{k}}+1}\left(1+\mathrm{r}+\mathrm{r}^{2}+\ldots+\mathrm{r}^{2^{\mathrm{k}-1}}\right)
\end{aligned}
$$

The case $\mathrm{l}=2 \mathrm{k}$ (II)

Let $\mathrm{r}=\mathrm{r}_{1}^{2}+\mathrm{r}_{1}$ and $\mathrm{s}=\mathrm{s}_{1}^{2}+\mathrm{s}_{1}$
Then A_{1} is the number of solutions of

$$
\begin{aligned}
& \mathrm{v}^{\mathrm{v}^{\mathrm{k}+1}}\left(\mathrm{r}_{1}{ }^{2 \mathrm{k}}+\mathrm{r}_{1}+1\right)=(\mathrm{v}+1)^{2^{\mathrm{k}+1}}\left(\mathrm{~s}_{1}{ }^{\mathrm{k}^{\mathrm{k}}}+\mathrm{s}_{1}+1\right) \\
& \mathrm{v}^{2 \mathrm{k}^{\mathrm{k}+1}}\left(\mathrm{r}_{1}{ }^{2{ }^{2 \mathrm{k}}}+\mathrm{r}_{1}+1\right)=(\mathrm{v}+1)^{2^{2 \mathrm{k}+1}}\left(\mathrm{~s}_{1}{ }^{2 \mathrm{k}}+\mathrm{s}_{1}+1\right)
\end{aligned}
$$

and $A_{1} / 4$ is the number of solutions of

$$
\begin{array}{cl}
\mathrm{x}_{1} & =\delta^{2^{\mathrm{k}+1}} \mathrm{y}_{1} \\
\mathrm{x}_{1}{ }^{2^{\mathrm{k}}+\mathrm{x}_{1}+1} & =\delta^{2^{2 \mathrm{k}+1}}\left(\mathrm{y}_{1}{ }^{2^{k}}+\mathrm{y}_{1}+1\right)
\end{array}
$$

where $\operatorname{Tr}_{\mathrm{m}}\left(\mathrm{x}_{1}\right)=\operatorname{Tr}_{\mathrm{m}}\left(\mathrm{y}_{1}\right)=1$ and $\delta=(\mathrm{v}+1) / \mathrm{v}$
Eliminating x_{1} leads to the equation

$$
\left(\frac{y_{1}}{u}\right)^{2^{2}}+\left(\frac{y_{1}}{u}\right)+C=0
$$

for some u and where

$$
C=\frac{\left(v^{2^{2 k}}+v+1\right)\left(v^{2^{k}}+1\right) v^{2 k}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}
$$

A Key Theorem

Theorem

Let A_{1} be the number of solutions in $\operatorname{GF}\left(2^{m}\right)$ of

$$
\begin{aligned}
& \mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{u}=\mathrm{a}(=1) \\
& x^{2^{k}+1}+y^{2^{k}+1}+z^{2^{k^{+}}}+u^{2^{k^{+}}}=0 \\
& \mathrm{x}^{2 \mathrm{k}^{2}+1}+\mathrm{y}^{2 \mathrm{k}_{+1}}+\mathrm{z}^{2 \mathrm{k}_{+1}}+\mathrm{u}^{2 \mathrm{k}^{2}+1}=0
\end{aligned}
$$

Then $\mathrm{A}_{1}=8 \mathrm{~N}$ where N is the number of solutions of

$$
\operatorname{Tr}_{\mathrm{m}}\left(\mathrm{f}_{1}(\mathrm{v})\right)=\operatorname{Tr}_{\mathrm{m}}\left(\mathrm{f}_{2}(\mathrm{v})\right)=\operatorname{Tr}_{\mathrm{m}}\left(\mathrm{f}_{3}(\mathrm{v})=0\right.
$$

where $\mathrm{v} \neq 0,1$ is in $\operatorname{GF}\left(2^{\mathrm{m}}\right)$ and

$$
f_{1}(v)=\frac{\left(v^{2}+v\right)^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}+1, f_{2}(v)=\frac{(v+1)^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}, f_{3}(v)=\frac{v^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}
$$

Description of $f_{i}+f_{j}$'s

$$
\begin{aligned}
& f_{1}(v)=\frac{\left(v^{2}+v\right)^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}+1 \quad\left(=f_{1}(v+1)\right) \\
& f_{2}(v)=\frac{(v+1)^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}} \quad\left(=f_{3}(v+1)\right) \\
& f_{3}(v)=\frac{v^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}} \quad\left(=f_{2}(v+1)\right) \\
& f_{1}(v)+f_{2}(v)=\frac{(v+1)^{2^{k+1}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}+1 \quad\left(=f_{1}(v+1)+f_{3}(v+1)\right) \\
& f_{1}(v)+f_{3}(v)=\frac{v^{2^{k+1}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}} \\
& f_{2}(v)+f_{3}(v)=\frac{1}{\left(v^{2^{k}}+v\right)^{2^{k}+1}} \\
& f_{1}(v)+f_{2}(v)+f_{3}(v)=\frac{\left(v^{2}+v+1\right)^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}+1
\end{aligned}
$$

A_{1} and exponential Sums

Let N be the number of solutions of

$$
\operatorname{Tr}_{n}\left(f_{1}(v)\right)=\operatorname{Tr}_{n}\left(f_{2}(v)\right)=\operatorname{Tr}_{n}\left(f_{3}(v)\right)=0
$$

Then

$$
\begin{aligned}
A_{1}=8 N= & \sum_{v \neq\{0,1\}}\left(1+(-1)^{T r_{n}\left(f_{1}(v)\right)}\right)\left(1+(-1)^{T r_{n}\left(f_{2}(v)\right)}\right)\left(1+(-1)^{T r_{n}\left(f_{3}(v)\right)}\right) \\
= & 2^{n}-2+\sum_{v \neq\{0,1\}}(-1)^{T r_{n}\left(f_{1}(v)\right)}+\sum_{v \neq\{0,1\}}(-1)^{T r_{n}\left(f_{2}(v)\right)}+\ldots \\
& +\sum_{v \neq\{0,1\}}(-1)^{T r_{n}\left(f_{1}(v)+f_{2}(v)+f_{3}(v)\right)} \\
= & 2^{\mathrm{n}}-2+S_{1}+S_{2}+S_{3}+S_{12}+S_{13}+S_{23}+S_{123} \\
= & 2^{\mathrm{n}}+1+3 G_{n}^{(k)}-2 \mathrm{C}_{\mathrm{n}}-2 K_{n}^{\prime}
\end{aligned}
$$

since further calculations give

$$
\mathrm{S}_{12}=\mathrm{S}_{13}=-\mathrm{C}_{\mathrm{n}}+2, \mathrm{~S}_{2}=\mathrm{S}_{3}=\mathrm{S}_{23}=G_{n}^{(k)}-1, \quad \mathrm{~S}_{1}=\mathrm{S}_{123}=K_{n}^{\prime}
$$

$\mathrm{G}_{\mathrm{n}}{ }^{(1)}=\mathrm{G}_{\mathrm{n}}{ }^{(2)}$ for \mathbf{n} odd

LEMMA 1. Let n be odd.

$$
\mathrm{G}_{\mathrm{n}}^{(1)}=-\sum_{x G F\left(2^{m}\right)}(-1)^{T r_{m}\left(x^{3}+x^{-1}\right)}=-\eta_{1}^{n}-\eta_{2}^{n}-\eta_{3}^{n}-\eta_{4}^{n}
$$

where $\eta_{i}^{n ' s}$ are zeros of

$$
\mathrm{L}_{1}(\mathrm{z})=\mathrm{z}^{4}+\mathrm{z}^{3}+2 \mathrm{z}+4
$$

LEMMA 2. Let n be odd.

$$
\mathrm{G}_{\mathrm{n}}^{(2)}=-\sum_{x G F\left(2^{m}\right)}(-1)^{T r_{m}\left(x^{5}+x^{-1}\right)}=-\omega_{1}^{n}-\omega_{2}^{n}-\omega_{3}^{n}-\omega_{4}^{n}-\omega_{5}^{n}-\omega_{6}^{n}
$$

where $\omega_{i}^{n ' s}$ are zeros of

$$
\begin{aligned}
L_{2}(z) & =z^{6}+z^{5}+4 z^{3}+4 z+8 \\
& =\left(z^{2}+2\right) L_{1}(z)
\end{aligned}
$$

Hence,

$$
\mathrm{G}_{\mathrm{n}}^{(2)}=\mathrm{G}_{\mathrm{n}}^{(1)}-(i \sqrt{2})^{n}-(-i \sqrt{2})^{n}=\mathrm{G}_{\mathrm{n}}^{(1)} \text { for } n \text { odd }
$$

$K_{\mathrm{n}}{ }^{\prime}=\mathrm{K}_{\mathrm{n}}$ for $\mathbf{k}=\mathbf{2}$

Let $k=2$

$$
f(x)=\frac{\left(x^{2}+x\right)^{2^{k}}}{\left(x^{2^{k}}+x\right)^{2^{k}+1}}=\frac{\left(x^{2}+x\right)^{4}}{\left(x^{4}+x\right)^{5}}=\frac{z^{4}}{\left(z^{2}+z\right)^{5}}=\frac{1}{\left(z^{2}+1\right)^{5} z}=\frac{1}{g(z)}
$$

where $z=x^{2}+x$ and

$$
g(z)=\left(z^{2}+1\right)^{5} z
$$

Note

$$
D_{5}(t)+t^{-1}=\frac{1}{g(z)} \text { where } t=\frac{z}{z+1}
$$

LEMMA

Let $n=2$ then $K_{n}{ }^{\prime}=K_{n}$
Proof : $K_{n}{ }^{\prime}=\sum_{x \neq 0}(-1)^{T r_{n}(f(x))}=2 \sum_{z \neq 0, \operatorname{Tr}(z)=0}(-1)^{T r_{n}\left(\frac{1}{g(z)}\right)}$

$$
\begin{aligned}
& =\sum_{z \neq 0}(-1)^{T r_{n}\left(\frac{1}{g(z)}\right)}+\sum_{z \neq 0}(-1)^{\operatorname{Tr}_{n}\left(\frac{1}{g(z)}+z\right)} \\
& =K_{n}+0 \\
& =K_{n}
\end{aligned}
$$

Connection to Dillon-Dobbertin (DS)

Let $\Delta_{\mathrm{k}}(\mathrm{v})=(\mathrm{v}+1)^{2^{2 \mathrm{k}-2 \mathrm{k}+1}}+\mathrm{v}^{2 \mathrm{k}_{-2} \mathrm{k}^{\mathrm{k}}+}+1$
$-\Delta_{\mathrm{k}}(\mathrm{v})=\Delta_{\mathrm{m}-\mathrm{k}}(\mathrm{v})=\frac{1}{f_{1}(v)+1}=\frac{\left(v^{2^{k}}+v\right)^{2^{k}+1}}{\left(v^{2}+v\right)^{2^{k}}}$
$-\Delta_{\mathrm{k}}(\mathrm{v})$ is a 2-to-1 map
$-\operatorname{Im}\left(\Delta_{\mathrm{k}}\right)$ leads to Dillon - Dobbertin difference sets

Connection: Dickson - Kloostermann
Conjecture. Let k be even and $(k, n)=1$. Then

$$
K_{n}=\sum_{x \in G F\left(2^{n}\right)^{* *}}(-1)^{\operatorname{Tr}\left(\frac{1}{D_{3}(x)^{\frac{1}{2^{k}+1}}}\right)}
$$

Conclusions

- Overview of cross correlation of m-sequences
- Complete correlation distribution for new families with 5-valued correlation if A_{1} can be calculated

$$
\mathrm{d}=\left(2^{2 \mathrm{k}}+1\right) /\left(2^{\mathrm{k}}+1\right), \quad \mathrm{n} \text { odd }
$$

- Complete correlation distribution for $\mathrm{k}=1$ and $\mathrm{k}=2$
- Conjectured the correlation distribution to be the same for any k whenever $(\mathrm{k}, \mathrm{n})=1$
- Two new conjectures on exponential sums
- Connections to Dickson polynomials and DillonDobbertin difference sets

Appendix

- Computing S_{12} and $\mathrm{S}_{13} \quad\left(=-\mathrm{C}_{\mathrm{n}}+2\right)$
- Computing $\mathrm{S}_{2}, \mathrm{~S}_{3}$ and $\mathrm{S}_{23} \quad\left(=-\mathrm{G}_{\mathrm{n}}{ }^{(\mathrm{k})+2)}\right.$
- Connection to Dillon-Dobbertin difference sets
- Showing that $\mathrm{S}_{1}=\mathrm{S}_{123}$

Computing S_{12} and S_{13}

LEMMA. Let n be odd and $(k, n)=1$. Then

$$
\mathrm{S}_{12}=\mathrm{S}_{13}=-\sum_{x G F\left(2^{n}\right)}(-1)^{T r_{n}\left(x^{2^{k}+1}+x\right)}+2=-C_{n}+2
$$

PROOF: Note that since $f_{3}(v)=f_{2}(v+1)$ then $S_{12}=S_{13}$

$$
\begin{aligned}
f_{1}(v)+f_{3}(v)+1 & =\frac{\left(v^{2}+v\right)^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}+\frac{v^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}=\frac{v^{2^{k+1}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}} \\
& =\frac{v^{2^{k}-1}}{\left(v^{2^{k-1}}+1\right)^{2^{k}+1}}=\frac{r}{(r+1)^{2^{k}+1}}=\frac{1}{(r+1)^{2^{k}+1}}+\frac{1}{(r+1)^{2^{k}}} \\
& =\mathrm{x}^{2^{k}+1}+\mathrm{x}^{2^{k}}
\end{aligned}
$$

Hence,

$$
\mathrm{S}_{12}=\mathrm{S}_{13}=\sum_{v \notin\{0,1\}}(-1)^{T r_{n}\left(f_{1}(v)+f_{3}(v)\right)}=\sum_{x \notin\{0,1\}}(-1)^{T r_{n}\left(x^{k^{k}+1}+x+1\right)}=-C_{n}+2
$$

Computing $\mathrm{S}_{2}, \mathrm{~S}_{3}$ and S_{23}

LEMMA Let n be odd and $(k, n)=1$. Then

$$
\mathrm{S}_{2}=\mathrm{S}_{3}=\mathrm{S}_{23}=\sum_{v \notin\{0,1\}}(-1)^{T r\left(x^{2^{k}+1}+x^{-1}\right)}=G_{n}^{(k)}-1
$$

PROOF: Let $f_{3}(v)=\frac{v^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}} \quad\left(=f_{2}(v+1)\right)$ then $\mathrm{S}_{2}=\mathrm{S}_{3}$.
Note $f_{2}(v)+f_{3}(v)=\frac{1}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}$.
Then $v=t^{2^{k}+1}$ is one - to - one since $(k, n)=1$ and

$$
f_{3}(v)=\frac{v^{2^{k}}}{\left(v^{2^{k}}+v\right)^{2^{k}+1}}=\frac{t^{2^{2 k}+2^{k}}}{\left(t^{2^{2 k}+2^{k}}+t^{2^{k}+1}\right)^{2^{k}+1}}=\left(\frac{t^{2^{k}}}{t^{2^{2 k}+2^{k}}+t^{2^{k}+1}}\right)^{2^{k}+1}=\left(\frac{1}{t^{2^{2 k}}+t}\right)^{2^{k}+1}
$$

Hence,

$$
\begin{aligned}
\mathrm{S}_{3} & =2 \sum_{T r_{m}\left(\frac{1}{x}\right)=0, x \neq 0}(-1)^{T r_{n}\left(x^{k^{k}+1}\right)}=\sum_{x \neq 0}(-1)^{T r_{n}\left(x^{2^{k}+1}+\frac{1}{x}\right)}+\sum_{x \neq 0}(-1)^{T r_{n}\left(x^{k^{k}+1}\right)} \\
& =\sum_{x \neq 0}(-1)^{T r_{n}\left(x^{k^{k}+1}+\frac{1}{x}\right)}=G_{n}^{(k)}-1
\end{aligned}
$$

Connection to Dillon-Dobbertin (DS)

Let $\Delta_{\mathrm{k}}(\mathrm{v})=(\mathrm{v}+1)^{2^{2 \mathrm{k}-2 \mathrm{k}+1}}+\mathrm{v}^{2 \mathrm{k}_{-2} \mathrm{k}^{\mathrm{k}}+}+1$

Then

- $\Delta_{\mathrm{k}}(\mathrm{v})=\Delta_{\mathrm{m}-\mathrm{k}}(\mathrm{v})=\frac{1}{f_{1}(v)+1}=\frac{\left(v^{2^{k}}+v\right)^{2^{k}+1}}{\left(v^{2}+v\right)^{2^{k}}}$
- $\Delta_{\mathrm{k}}(\mathrm{v})$ is a 2-to-1 map
- $\operatorname{Im}\left(\Delta_{\mathrm{k}}\right)$ leads to Dillon - Dobbertin difference sets
- Let

$$
g(z)=\frac{\left(\sum_{i=0}^{k-1} z^{2^{i}}\right)^{2^{k}+1}}{z^{2^{k}}}
$$

- Then g is a 2-to-1 map $\operatorname{Im}(\mathrm{g})=\operatorname{Im}\left(\Delta_{\mathrm{k}}\right)$ and for k even

$$
f_{1}(v)=\frac{1}{g\left(v^{2}+v\right)}+1 \quad \text { and } \quad f_{7}(v)=\frac{1}{g\left(v^{2}+v+1\right)}+1
$$

Showing that $S_{1}=S_{123}$

Lemma

Let k be even, n odd and $(\mathrm{k}, \mathrm{n})=1$ then

$$
S_{1}=S_{123}=-K_{n}^{\prime}+1
$$

Proof. Since k is even and $g(z)$ 2-to- 1 then $\operatorname{Im}\left(f_{1}\right)=\operatorname{Im}\left(\mathrm{f}_{7}\right)$

$$
\begin{aligned}
\mathrm{S}_{1}+S_{123} & =\sum_{v \neq 0,1}(-1)^{\operatorname{Tr}\left(f_{1}(v)\right)}+\sum_{v \neq 0,1}(-1)^{\operatorname{Tr}\left(f_{7}(v)\right)} \\
& =2 \sum_{z \neq 0,1}(-1)^{\operatorname{Tr}\left(\frac{1}{g(z)}+1\right)} \\
& =2 \sum_{v \neq 0}(-1)^{\operatorname{Tr}\left(f_{1}(v)\right)} \\
& =2 S_{1}
\end{aligned}
$$

